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Abstract
We present a novel differential–difference system in (2+1)-dimensional space–
time (one discrete, two continuum), arising from Bogoyavlensky’s (2 + 1)-
dimensional Korteweg–de Vries hierarchy. Our method is based on the bilinear
identity of the hierarchy, which is related to the vertex-operator representation
of the toroidal Lie algebra, sltor

2 .

PACS numbers: 02.30.Jr, 02.20.-a, 05.45.Yv

1. Introduction and main results

Multi-dimensional generalization of classical soliton equations is one of the most exciting
topics in the field of integrable systems. Among other things, Calogero [1] proposed an
interesting example that is a (2 + 1)-dimensional extension of the Korteweg–de Vries (KdV)
equation

ut = 1
4uxxy + uuy + 1

2ux

∫ x

uy dx. (1)

Yu et al [2] obtained multi-soliton solutions of the (2 + 1)-dimensional KdV equation (1) using
Hirota’s bilinear method. Let us consider the following Hirota-type equations:

(D4
x − 4DxDt ′)τ · τ = 0 (2)

(DyD
3
x + 2DyDt ′ − 6DtDx)τ · τ = 0 (3)

where we have used the D-operators of Hirota defined as

DxDy . . . f (x, y, . . .) · g(x, y, . . .) def= ∂s∂tf (x + s, y + t, . . .)g(x − s, y − t, . . .)|s,t,...=0.

3 Present address: Department of Mathematics, Rikkyo University, Nishi-ikebukuro 3-34-1, Toshima-ku, Tokyo
171-8501, Japan.
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Note that we have introduced the auxiliary variable t ′ that is a hidden parameter in (1). If we
set u = 2(log τ)xx and use (2) to eliminate ∂t ′ , then one can show that u = u(x, y, t) solves (1).

Bogoyavlensky [3] showed that there is a hierarchy of higher-order integrable equations
associated with (1). In [4], Ikeda and Takasaki generalized Bogoyavlensky’s hierarchy from
the viewpoint of Sato’s theory of KP hierarchy [5–8], and discussed the relationship to toroidal
Lie algebras. We note that the relation between integrable hierarchy and toroidal algebras was
also discussed by Billig [9] and Iohara et al [10] using vertex-operator representations.

In the present paper, we propose the following differential–difference system with the
same symmetry:

∂tuk = �−k

(
∂xuk+1

1 − exp(−uk+1 − uk)
− ∂xuk

1 − exp(uk+1 + uk)
− 1 + exp(uk+1 + uk)

1 − exp(uk+1 + uk)
vk

)
(4)

�−kvk = ∂xuk+1

uk+1
+

∂x(uk+1 + uk)

1 − exp(uk+1 + uk)
+
∂xuk

uk
+

∂x(uk + uk−1)

1 − exp(uk + uk−1)
(5)

where �−k denotes the backward-difference operator �−k
def= 1 − exp(−∂k) (�−kuk =

uk − uk−1). We also show that this system has soliton-type solutions.

2. Lie algebraic derivation of the bilinear identity

Here we briefly review the Lie algebraic derivation of the bilinear identity of Bogoyavlensky’s
hierarchy [4], which is a generating function of Hirota-type differential equations. We remark
that the Lie algebra considered in [4] is bigger than that considered in this paper. We have not
included the derivations to sltor

2 here, since these are not needed for our purpose. Due to this
difference, the proof given below may be simpler than that of [4].

The two-toroidal Lie algebra sltor
2 [11,12] is the universal central extension of the double-

loop algebra sl2 ⊗ C[s, s−1, t, t−1], while the affine Lie algebra ŝl2 is the central extension of
sl2 ⊗C[t, t−1]. LetA be the ring of Laurent polynomials of two variables s and t . As a vector
space, sltor

2 is isomorphic to sl2 ⊗ C[s, s−1, t, t−1] ⊕ �A/dA, where �A denotes the module
of Kähler differentials of A defined with the canonical derivation d : A → �A. We define the
Lie algebra structure of sltor

2 by

[x ⊗ a, y ⊗ b] = [x, y] ⊗ ab + (x|y)(da)b (x, y ∈ sl2, a, b ∈ A) (6)

[sltor
2 , �A/dA] = 0 (7)

where (x|y) denotes the Killing form and · : �A → �A/dA the canonical projection.
In terms of the generating seriesXm(z) (X = E,F,H ,m ∈ Z),Ks

m(z) andKt
m(z), defined

by

Xm(z)
def=

∑
n∈Z

X ⊗ sntm · z−n−1

Ks
m(z)

def=
∑
n∈Z

sntm d log s · z−n

Kt
m(z)

def=
∑
n∈Z

sntm d log t · z−n−1

the relation (6) can be expressed as

Xn(z)Yn(w) = 1

z− w
[X, Y ]m+n(w) +

1

(z− w)2
(X|Y )Ks

m+n(w) +
m

z− w
(X|Y )Kt

m+n(w)

+ regular as z → w. (8)
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There exists a class of representations of sltor
2 , which comes directly from that of ŝl2. We

consider the space of polynomials

Fy
def= C[yj , j ∈ Z] ⊗ C[exp(±y0)]

and define the generating series ϕ(z) and Vm(y; z) by

ϕ(z)
def=

∑
n∈Z

nynz
n−1 Vm(y; z) def= exp

[
m

∑
n∈Z

ynz
n

]
.

Proposition 1 (cf [10, 13]). Let (V , π) be a representation of ŝl2 such that d log s �→ c · idV
for c ∈ C. Then we can define the representation π tor of sltor

2 on V ⊗ Fy such that

Xm(z) �→ Xπ(z)⊗ Vm(z)

Ks
m(z) �→ c · idV ⊗ Vm(z)

Kt
m(z) �→ c · idV ⊗ ϕ(z)Vm(z)

where X = E,F,H , m ∈ Z and Xπ(z)
def= ∑

n∈Z
π(X ⊗ sn)z−n−1.

Proof. Using the operator-product expansion for ŝl2

X(z)Y (w) = 1

z− w
[X, Y ](w) +

1

(z− w)2
(X|Y )K + regular as z → w

and the property Vm(z)Vn(z) = Vm+n(z), it is straightforward to show that Xm(z) satisfies (8).
The remaining relations can be checked by direct calculations. �

To see the relationship to soliton theory, we shall consider the representation of ŝl2 on
the fermionic Fock space [7, 8]. Let ψj , ψ∗

j (j ∈ Z) be free fermions with the canonical
anti-commutation relation. In terms of the generating series defined as

ψ(λ) =
∑
n∈Z

ψnλ
n ψ∗(λ) =

∑
n∈Z

ψ∗
nλ

−n

the canonical anti-commutation relation is written as

[ψ(λ), ψ∗(µ)]+ = δ(λ/µ) [ψ(λ), ψ(µ)]+ = [ψ∗(λ), ψ∗(µ)]+ = 0 (9)

where δ(λ)
def= ∑

n∈Z
λn is the formal delta-function.

Consider the fermionic Fock space F with the vacuum vector |vac〉 satisfying

ψj |vac〉 = 0 for j < 0

ψ∗
j |vac〉 = 0 for j � 0

and the dual Fock space F∗ with the dual vacuum vector 〈vac| satisfying

〈vac|ψj = 0 for j � 0

〈vac|ψ∗
j = 0 for j < 0

〈vac|vac〉 = 1.

As mentioned in [7, 8], a level-1 representation of ŝl2 is given by the elements

:ψ(λ)ψ∗(−λ) : =
∑
j,n∈Z

(−1)j :ψj+nψ
∗
j : λn

where : · : denotes the fermionic normal ordering, :ψiψ∗
j :

def= ψiψ
∗
j −〈vac|ψiψ∗

j |vac〉. Applying

proposition 1, we can construct a representation of sltor
2 on the space Fy def= F ⊗ Fy with the

vacuum vector |vac〉tor def= |vac〉 ⊗ 1.
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We now introduce the following operator acting on Fy ⊗ Fy ′ :

�tor def=
∑
m∈Z

∮
dλ

2π iλ
ψ(λ)Vm(λ; y)⊗ ψ∗(λ)V−m(λ; y ′).

Using the anti-commutation relation (9) and the relation Vm(y; λ)Vn(y; λ) = Vm+n(y; λ), we
can obtain the following identity by direct calculations:

[�tor, ψ(p)ψ∗(p)Vn(y;p)⊗ 1 + 1 ⊗ ψ(p)ψ∗(p)Vn(y ′;p)] = 0

which means the action of sltor
2 on Fy ⊗ Fy ′ commutes with �tor. It is then straightforward to

show that

�tor(g|vac〉tor ⊗ g|vac〉tor) = 0 (10)

for g = exp(X), X ∈ sltor
2 .

To rewrite (10) into bosonic language, we have the following two lemmas.

Lemma 1 (‘Boson–fermion correspondence’ [7, 8]). For any |ν〉 ∈ F , we have the following
formulae:

〈vac|ψ∗
0 exp(H(x))ψ(λ)|ν〉 = exp(ξ(x, λ))〈vac| exp(H(x − [λ−1]))|ν〉

〈vac|ψ−1 exp(H(x))ψ∗(λ)|ν〉 = λ exp(−ξ(x, λ))〈vac| exp(H(x + [λ−1]))|ν〉

where we have used the following notation:

x = (x1, x3, . . .)

H(x)
def=

∞∑
n=1

∑
j∈Z

xnψjψ
∗
n+j

ξ(x, λ)
def=

∞∑
n=1

xnλ
n

[λ−1]
def= (1/λ, 1/2λ2, 1/3λ3, . . .).

Lemma 2 ([9, 10]). Let P(n) = ∑
j�0 n

jPj , where Pj ∈ Diff(z) are differential operators
that may not depend on z. If∑

n∈Z

znP (n)g(z) = 0

for some formal series g(z) = ∑
j gj z

j , then

P(ε − z∂z)g(z)|z=1 = 0

as a polynomial in ε.

Define the τ -function as

τ(x,y)
def= tor〈vac| exp(H(x))g|vac〉tor.

From relation (10), together with lemma 1 and 2, we have the following bilinear identity:∮
dλ

2π i
exp(ξ(x − x′, λ))τ (x − [λ−1], y0 + η(b̌, λ2), y̌ − b̌)

×τ(x′ + [λ−1], y0 − η(b̌, λ2), y̌ + b̌) = 0 (11)

where y̌
def= (y2, y4, . . .) and η(b̌, λ2)

def= ∑∞
n=1 b2nλ

2n.
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Expanding (11), we can obtain Hirota-type differential equations including (2) and (3)
(x1 = x, x3 = t ′, y0 = y, y2 = t). In this sense, the bilinear identity (11) is a generating
function of Hirota-type differential equations of Bogoyavlensky’s hierarchy. The N -soliton
solution of (11) is obtained as follows [4]:

τN(x,y) =
N∑
l=0

∑
j1<···<jl

cj1···jl
l∏

m=1

ajm exp(ηjm(x,y))

ηj (x,y)
def=

∞∑
n=1

2p2n−1
j x2n−1 +

∞∑
n=1

rjp
2n
j y2n

cj1···jl
def=

∏
1�m<n�l

(pjm − pjn)
2

(pjm + pjn)2
.

(12)

3. Derivation of the differential–difference system

We now apply the Miwa transformation [8, 14]

x′ = l[α] +m[β] + n[γ ]

x = (l + 1)[α] + (m + 1)[β] + (n + 1)[γ ]
(13)

to the bilinear identity (11). Here we have used the notation l[α] = (lα, lα2/2, lα3/3, . . .).
We first consider the case b̌ = (b2, b4, . . .) = 0. In this case, the bilinear identity (11) is
reduced to that of the ordinary KP hierarchy. Thus we have the Hirota–Miwa equation (or the
discrete KP equation)

α(β − γ ) τ(l + 1,m, n; y)τ (l,m + 1, n + 1; y)

+β(γ − α) τ(l,m + 1, n; y)τ (l + 1,m, n + 1; y)

+γ (α − β) τ(l,m, n + 1; y)τ (l + 1,m + 1, n; y) = 0 (14)

where τ(l,m, n; y) denotes

τ(l,m, n; y) = τ(x = l[α] +m[β] + n[γ ],y).

We then consider the time evolution with respect to y0 and y2. Collecting the coefficients
of b2 in the bilinear identity (11) gives∮

dλ

2π i
exp(ξ(x − x′, λ))(Dy2 − λ2Dy0)τ (x

′ + [λ−1],y) · τ(x − [λ−1],y) = 0.

Applying the Miwa transformation (13) we obtain

α2βγ (β − γ )Dy2τ(l + 1,m, n; y) · τ(l,m + 1, n + 1; y)

+αβ2γ (γ − α)Dy2τ(l,m + 1, n; y) · τ(l + 1,m, n + 1; y)

+αβγ 2(α − β)Dy2τ(l,m, n + 1; y) · τ(l + 1,m + 1, n; y)

= βγ (β − γ )Dy0τ(l + 1,m, n; y) · τ(l,m + 1, n + 1; y)

+γα(γ − α)Dy0τ(l,m + 1, n; y) · τ(l + 1,m, n + 1; y)

+αβ(α − β)Dy0τ(l,m, n + 1; y) · τ(l + 1,m + 1, n; y)

−(α − β)(β − γ )(γ − α)

×Dy0τ(l,m, n; y) · τ(l + 1,m + 1, n + 1; y). (15)

We further impose the condition β = γ . Then the τ -function τ(l,m, n; y) depends only

on k
def= m− n, l and y. In this sense, we rewrite

τ(l,m, n; y) → τ(l, k; y).
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Figure 1. Special case of a two-soliton solution (‘V-soliton’) with p1 = p2 (p1 = p2 = 0.3,
r1 = 0.15, r2 = −0.1, a1 = a2 = 1, α = 0.8, β = 0.5).

Under this condition, (14) and (15) are reduced to

2α τ(l + 1, k; y)τ (l, k; y)− (α + β) τ(l, k + 1; y)τ (l + 1, k − 1; y)

−(α − β) τ(l, k − 1; y)τ (l + 1, k + 1; y) = 0 (16)

αβ2Dy2(2α τ(l + 1, k; y) · τ(l, k; y)− (α + β) τ(l, k + 1; y) · τ(l + 1, k − 1; y)

−(α − β) τ(l, k − 1; y) · τ(l + 1, k + 1; y))

= Dy0(2(2β
2 − α2) τ (l + 1, k; y) · τ(l, k; y)

−α(α + β) τ(l, k + 1; y) · τ(l + 1, k − 1; y)

−α(α − β) τ(l, k − 1; y) · τ(l + 1, k + 1; y)). (17)

Furthermore, we can construct the N -soliton solution by applying (13) to (12)

τN(l, k; y0, y2) =
N∑
l=0

∑
j1<···<jl

cj1···jl
l∏

m=1

φjm(l, k; y0, y2)

φj (l, k; y0, y2)
def= aj exp(rj y0 + rjp

2
j y2)

(
1 + pjα

1 − pjα

)l ( 1 + pjβ

1 − pjβ

)k (18)

where cj1···jl is the same as the continuum one (12). We remark that the N -soliton τ -function
can be written as the Wronskian determinant. Using the determinant expression, we can show
that both (16) and (17) are reduced to the Plücker relations.

Introducing the variables as

∂t
def= 2

α2
∂y0 − 2∂y2 ∂x

def= ∂y2 − 1

β2
∂y0

uk(t, x)
def= log

[(
β − α

β + α

)1/2
τ(l + 1, k + 1)τ (l, k)

τ (l, k + 1)τ (l + 1, k)

]

vk(t, x)
def= ∂x log

τ(l, k + 2)

τ (l, k)

we have the differential–difference equations (4) and (5), which have a N -soliton solution
corresponding to the τ -function (18).

Let us consider the behaviour of uk(t, x) and vk(t, x) corresponds to (18) with N = 2
(two-soliton solution). The choicep1 = p2 gives a travelling wave solution that has a ‘V’ shape
(figure 1). In generic cases (p1 �= p2) the solution has the same features as the two-soliton
solution of the KP equation (figure 2).
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Figure 2. Two-soliton solution with p1 �= p2 (p1 = 0.3, p2 = 0.23, r1 = 0.15, r2 = −0.1,
a1 = a2 = 1, α = 0.8, β = 0.5).

4. Concluding remarks

In this paper, we have introduced the differential–difference system (4) and (5), which is related
to the toroidal Lie algebra, sltor

2 . Since the symmetry of the toroidal Lie algebra allows us to
introduce extra parameters of wavenumbers in the soliton solution (i.e. rj in (12) and (18)), it
might be possible to construct some interesting solutions. In particular, we can obtain a class of
travelling-wave solutions that are ‘V’ shaped (figure 1), which is a special case of two-soliton
solutions. The existence of the V-soliton type solution is one of the features of this class of
equations.

We note that there exist solutions of the same shape for the (2 + 1)-dimensional KdV
equation (1), and for a (2 + 1)-dimensional generalization of the nonlinear Schrödinger (NLS)
equation [15] that also has the symmetry of toroidal Lie algebra sltor

2 [17]. We also remark
that Oikawa et al [16] discussed the propagation of the V-soliton in a two-layer fluid, which is
governed by an equation similar to the (2 + 1)-dimensional NLS equation.
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