A differential-difference system related to toroidal Lie algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 3410585
(http://iopscience.iop.org/0305-4470/34/48/322)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.101
The article was downloaded on 02/06/2010 at 09:46

Please note that terms and conditions apply.

A differential-difference system related to toroidal Lie algebra

Saburo Kakei ${ }^{1,3}$ and Yasuhiro Ohta ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences, School of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan
${ }^{2}$ Department of Applied Mathematics, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-hiroshima 739-8527, Japan
E-mail: kakei@rkmath.rikkyo.ac.jp and ohta@kurims.kyoto-u.ac.jp

Received 3 April 2001, in final form 11 June 2001
Published 23 November 2001
Online at stacks.iop.org/JPhysA/34/10585

Abstract

We present a novel differential-difference system in $(2+1)$-dimensional spacetime (one discrete, two continuum), arising from Bogoyavlensky's ($2+1$)dimensional Korteweg-de Vries hierarchy. Our method is based on the bilinear identity of the hierarchy, which is related to the vertex-operator representation of the toroidal Lie algebra, $\mathfrak{s t}_{2}^{\text {tor }}$.

PACS numbers: 02.30.Jr, 02.20.-a, 05.45.Yv

1. Introduction and main results

Multi-dimensional generalization of classical soliton equations is one of the most exciting topics in the field of integrable systems. Among other things, Calogero [1] proposed an interesting example that is a $(2+1)$-dimensional extension of the Korteweg-de Vries (KdV) equation

$$
\begin{equation*}
u_{t}=\frac{1}{4} u_{x x y}+u u_{y}+\frac{1}{2} u_{x} \int^{x} u_{y} \mathrm{~d} x . \tag{1}
\end{equation*}
$$

Yu et al [2] obtained multi-soliton solutions of the (2+1)-dimensional KdV equation (1) using Hirota's bilinear method. Let us consider the following Hirota-type equations:

$$
\begin{align*}
& \left(D_{x}^{4}-4 D_{x} D_{t^{\prime}}\right) \tau \cdot \tau=0 \tag{2}\\
& \left(D_{y} D_{x}^{3}+2 D_{y} D_{t^{\prime}}-6 D_{t} D_{x}\right) \tau \cdot \tau=0 \tag{3}
\end{align*}
$$

where we have used the D-operators of Hirota defined as
$\left.D_{x} D_{y} \ldots f(x, y, \ldots) \cdot g(x, y, \ldots) \stackrel{\text { def }}{=} \partial_{s} \partial_{t} f(x+s, y+t, \ldots) g(x-s, y-t, \ldots)\right|_{s, t, \ldots=0}$.
${ }^{3}$ Present address: Department of Mathematics, Rikkyo University, Nishi-ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan.

Note that we have introduced the auxiliary variable t^{\prime} that is a hidden parameter in (1). If we set $u=2(\log \tau)_{x x}$ and use (2) to eliminate $\partial_{t^{\prime}}$, then one can show that $u=u(x, y, t)$ solves (1).

Bogoyavlensky [3] showed that there is a hierarchy of higher-order integrable equations associated with (1). In [4], Ikeda and Takasaki generalized Bogoyavlensky's hierarchy from the viewpoint of Sato's theory of KP hierarchy [5-8], and discussed the relationship to toroidal Lie algebras. We note that the relation between integrable hierarchy and toroidal algebras was also discussed by Billig [9] and Iohara et al [10] using vertex-operator representations.

In the present paper, we propose the following differential-difference system with the same symmetry:

$$
\begin{align*}
& \partial_{t} u_{k}=\Delta_{-k}\left(\frac{\partial_{x} u_{k+1}}{1-\exp \left(-u_{k+1}-u_{k}\right)}-\frac{\partial_{x} u_{k}}{1-\exp \left(u_{k+1}+u_{k}\right)}-\frac{1+\exp \left(u_{k+1}+u_{k}\right)}{1-\exp \left(u_{k+1}+u_{k}\right)} v_{k}\right) \tag{4}\\
& \Delta_{-k} v_{k}=\frac{\partial_{x} u_{k+1}}{u_{k+1}}+\frac{\partial_{x}\left(u_{k+1}+u_{k}\right)}{1-\exp \left(u_{k+1}+u_{k}\right)}+\frac{\partial_{x} u_{k}}{u_{k}}+\frac{\partial_{x}\left(u_{k}+u_{k-1}\right)}{1-\exp \left(u_{k}+u_{k-1}\right)} \tag{5}
\end{align*}
$$

where Δ_{-k} denotes the backward-difference operator $\Delta_{-k} \stackrel{\text { def }}{=} 1-\exp \left(-\partial_{k}\right)\left(\Delta_{-k} u_{k}=\right.$ $u_{k}-u_{k-1}$). We also show that this system has soliton-type solutions.

2. Lie algebraic derivation of the bilinear identity

Here we briefly review the Lie algebraic derivation of the bilinear identity of Bogoyavlensky's hierarchy [4], which is a generating function of Hirota-type differential equations. We remark that the Lie algebra considered in [4] is bigger than that considered in this paper. We have not included the derivations to $\mathfrak{s t}_{2}^{\text {tor }}$ here, since these are not needed for our purpose. Due to this difference, the proof given below may be simpler than that of [4].

The two-toroidal Lie algebra $\mathfrak{s t}_{2}^{\text {tor }}[11,12]$ is the universal central extension of the doubleloop algebra $\mathfrak{s l}_{2} \otimes \mathbb{C}\left[s, s^{-1}, t, t^{-1}\right]$, while the affine Lie algebra $\widehat{\mathfrak{s l}}_{2}$ is the central extension of $\mathfrak{s l}_{2} \otimes \mathbb{C}\left[t, t^{-1}\right]$. Let A be the ring of Laurent polynomials of two variables s and t. As a vector space, $\mathfrak{s l}_{2}^{\text {tor }}$ is isomorphic to $\mathfrak{s l}_{2} \otimes \mathbb{C}\left[s, s^{-1}, t, t^{-1}\right] \oplus \Omega_{A} / \mathrm{d} A$, where Ω_{A} denotes the module of Kähler differentials of A defined with the canonical derivation d: $A \rightarrow \Omega_{A}$. We define the Lie algebra structure of $\mathfrak{s t}_{2}^{\text {tor }}$ by

$$
\begin{align*}
& {[x \otimes a, y \otimes b]=[x, y] \otimes a b+(x \mid y) \overline{(\mathrm{d} a) b} \quad\left(x, y \in \mathfrak{s l}_{2}, a, b \in A\right)} \tag{6}\\
& {\left[\mathfrak{s}_{2}^{\text {tor }}, \Omega_{A} / \mathrm{d} A\right]=0} \tag{7}
\end{align*}
$$

where ($x \mid y$) denotes the Killing form and ${ }^{-}: \Omega_{A} \rightarrow \Omega_{A} / \mathrm{d} A$ the canonical projection.
In terms of the generating series $X_{m}(z)(X=E, F, H, m \in \mathbb{Z}), K_{m}^{s}(z)$ and $K_{m}^{t}(z)$, defined by

$$
\begin{aligned}
& X_{m}(z) \stackrel{\text { def }}{=} \sum_{n \in \mathbb{Z}} X \otimes s^{n} t^{m} \cdot z^{-n-1} \\
& K_{m}^{s}(z) \stackrel{\text { def }}{=} \sum_{n \in \mathbb{Z}} \overline{s^{n} t^{m} \mathrm{~d} \log s} \cdot z^{-n} \\
& K_{m}^{t}(z) \stackrel{\text { def }}{=} \sum_{n \in \mathbb{Z}} \overline{s^{n} t^{m} \mathrm{~d} \log t} \cdot z^{-n-1}
\end{aligned}
$$

the relation (6) can be expressed as

$$
\begin{align*}
X_{n}(z) Y_{n}(w)= & \frac{1}{z-w}[X, Y]_{m+n}(w)+\frac{1}{(z-w)^{2}}(X \mid Y) K_{m+n}^{s}(w)+\frac{m}{z-w}(X \mid Y) K_{m+n}^{t}(w) \\
& + \text { regular as } z \rightarrow w . \tag{8}
\end{align*}
$$

There exists a class of representations of $\mathfrak{s l}_{2}^{\text {tor }}$, which comes directly from that of $\widehat{\mathfrak{s l}}_{2}$. We consider the space of polynomials

$$
F_{y} \stackrel{\text { def }}{=} \mathbb{C}\left[y_{j}, j \in \mathbb{Z}\right] \otimes \mathbb{C}\left[\exp \left(\pm y_{0}\right)\right]
$$

and define the generating series $\varphi(z)$ and $V_{m}(y ; z)$ by

$$
\varphi(z) \stackrel{\text { def }}{=} \sum_{n \in \mathbb{Z}} n y_{n} z^{n-1} \quad V_{m}(y ; z) \stackrel{\text { def }}{=} \exp \left[m \sum_{n \in \mathbb{Z}} y_{n} z^{n}\right]
$$

Proposition $1(\mathbf{c f}[\mathbf{1 0}, \mathbf{1 3}])$. Let (V, π) be a representation of $\widehat{\mathfrak{s l}}_{2}$ such that $\overline{\mathrm{d} \log s} \mapsto c \cdot \mathrm{id}_{V}$ for $c \in \mathbb{C}$. Then we can define the representation $\pi^{\text {tor }}$ of $\mathfrak{s t}_{2}^{\text {tor }}$ on $V \otimes F_{y}$ such that

$$
\begin{aligned}
& X_{m}(z) \mapsto X^{\pi}(z) \otimes V_{m}(z) \\
& K_{m}^{s}(z) \mapsto c \cdot \operatorname{id}_{V} \otimes V_{m}(z) \\
& K_{m}^{t}(z) \mapsto c \cdot \operatorname{id}_{V} \otimes \varphi(z) V_{m}(z)
\end{aligned}
$$

where $X=E, F, H, m \in \mathbb{Z}$ and $X^{\pi}(z) \stackrel{\text { def }}{=} \sum_{n \in \mathbb{Z}} \pi\left(X \otimes s^{n}\right) z^{-n-1}$.
Proof. Using the operator-product expansion for $\widehat{\mathfrak{s}}_{2}$

$$
X(z) Y(w)=\frac{1}{z-w}[X, Y](w)+\frac{1}{(z-w)^{2}}(X \mid Y) K+\text { regular as } z \rightarrow w
$$

and the property $V_{m}(z) V_{n}(z)=V_{m+n}(z)$, it is straightforward to show that $X_{m}(z)$ satisfies (8). The remaining relations can be checked by direct calculations.

To see the relationship to soliton theory, we shall consider the representation of $\widehat{\mathfrak{s l}}_{2}$ on the fermionic Fock space $[7,8]$. Let $\psi_{j}, \psi_{j}^{*}(j \in \mathbb{Z})$ be free fermions with the canonical anti-commutation relation. In terms of the generating series defined as

$$
\psi(\lambda)=\sum_{n \in \mathbb{Z}} \psi_{n} \lambda^{n} \quad \psi^{*}(\lambda)=\sum_{n \in \mathbb{Z}} \psi_{n}^{*} \lambda^{-n}
$$

the canonical anti-commutation relation is written as

$$
\begin{equation*}
\left[\psi(\lambda), \psi^{*}(\mu)\right]_{+}=\delta(\lambda / \mu) \quad[\psi(\lambda), \psi(\mu)]_{+}=\left[\psi^{*}(\lambda), \psi^{*}(\mu)\right]_{+}=0 \tag{9}
\end{equation*}
$$

where $\delta(\lambda) \stackrel{\text { def }}{=} \sum_{n \in \mathbb{Z}} \lambda^{n}$ is the formal delta-function.
Consider the fermionic Fock space \mathcal{F} with the vacuum vector \mid vac \rangle satisfying

$$
\begin{array}{lll}
\psi_{j}|\mathrm{vac}\rangle=0 & \text { for } & j<0 \\
\psi_{j}^{*}|\mathrm{vac}\rangle=0 & \text { for } & j \geqslant 0
\end{array}
$$

and the dual Fock space \mathcal{F}^{*} with the dual vacuum vector 〈vac| satisfying

$$
\begin{array}{lll}
\langle\operatorname{vac}| \psi_{j}=0 & \text { for } & j \geqslant 0 \\
\langle\operatorname{vac}| \psi_{j}^{*}=0 & \text { for } & j<0 \\
\langle\operatorname{vac} \mid \operatorname{vac}\rangle=1 . & &
\end{array}
$$

As mentioned in [7,8], a level-1 representation of $\widehat{\mathfrak{s l}}_{2}$ is given by the elements

$$
: \psi(\lambda) \psi^{*}(-\lambda):=\sum_{j, n \in \mathbb{Z}}(-1)^{j}: \psi_{j+n} \psi_{j}^{*}: \lambda^{n}
$$

where $: \cdot$: denotes the fermionic normal ordering, $: \psi_{i} \psi_{j}^{*}: \stackrel{\text { def }}{=} \psi_{i} \psi_{j}^{*}-\langle\operatorname{vac}| \psi_{i} \psi_{j}^{*}|\operatorname{vac}\rangle$. Applying proposition 1 , we can construct a representation of $\mathfrak{s l}_{2}^{\text {tor }}$ on the space $\mathcal{F}_{y} \stackrel{\text { def }}{=} \mathcal{F} \otimes F_{y}$ with the vacuum vector \mid vac $\rangle^{\text {tor }} \stackrel{\text { def }}{=} \mid$ vac $\rangle \otimes 1$.

We now introduce the following operator acting on $\mathcal{F}_{y} \otimes \mathcal{F}_{y^{\prime}}$:

$$
\Omega^{\mathrm{tor}} \stackrel{\text { def }}{=} \sum_{m \in \mathbb{Z}} \oint \frac{\mathrm{~d} \lambda}{2 \pi \mathrm{i} \lambda} \psi(\lambda) V_{m}(\lambda ; y) \otimes \psi^{*}(\lambda) V_{-m}\left(\lambda ; y^{\prime}\right) .
$$

Using the anti-commutation relation (9) and the relation $V_{m}(y ; \lambda) V_{n}(y ; \lambda)=V_{m+n}(y ; \lambda)$, we can obtain the following identity by direct calculations:

$$
\left[\Omega^{\text {tor }}, \psi(p) \psi^{*}(p) V_{n}(y ; p) \otimes 1+1 \otimes \psi(p) \psi^{*}(p) V_{n}\left(y^{\prime} ; p\right)\right]=0
$$

which means the action of $\mathfrak{s t}_{2}^{\text {tor }}$ on $\mathcal{F}_{y} \otimes \mathcal{F}_{y^{\prime}}$ commutes with $\Omega^{\text {tor }}$. It is then straightforward to show that

$$
\begin{equation*}
\Omega^{\mathrm{tor}}\left(g|\mathrm{vac}\rangle^{\mathrm{tor}} \otimes g|\mathrm{vac}\rangle^{\mathrm{tor}}\right)=0 \tag{10}
\end{equation*}
$$

for $g=\exp (X), X \in \mathfrak{s l}_{2}^{\text {tor }}$.
To rewrite (10) into bosonic language, we have the following two lemmas.
Lemma 1 ('Boson-fermion correspondence’ $[7,8]$). For any $|v\rangle \in \mathcal{F}$, we have the following formulae:

$$
\begin{aligned}
& \langle\operatorname{vac}| \psi_{0}^{*} \exp (H(\boldsymbol{x})) \psi(\lambda)|\nu\rangle=\exp (\xi(\boldsymbol{x}, \lambda))\langle\operatorname{vac}| \exp \left(H\left(\boldsymbol{x}-\left[\lambda^{-1}\right]\right)\right)|\nu\rangle \\
& \langle\operatorname{vac}| \psi_{-1} \exp (H(\boldsymbol{x})) \psi^{*}(\lambda)|\nu\rangle=\lambda \exp (-\xi(\boldsymbol{x}, \lambda))\langle\operatorname{vac}| \exp \left(H\left(\boldsymbol{x}+\left[\lambda^{-1}\right]\right)\right)|\nu\rangle
\end{aligned}
$$

where we have used the following notation:

$$
\begin{aligned}
& \boldsymbol{x}=\left(x_{1}, x_{3}, \ldots\right) \\
& H(\boldsymbol{x}) \stackrel{\text { def }}{=} \sum_{n=1}^{\infty} \sum_{j \in \mathbb{Z}} x_{n} \psi_{j} \psi_{n+j}^{*} \\
& \xi(\boldsymbol{x}, \lambda) \stackrel{\text { def }}{=} \sum_{n=1}^{\infty} x_{n} \lambda^{n} \\
& {\left[\lambda^{-1}\right] \stackrel{\text { def }}{=}\left(1 / \lambda, 1 / 2 \lambda^{2}, 1 / 3 \lambda^{3}, \ldots\right)}
\end{aligned}
$$

Lemma $2([9,10])$. Let $P(n)=\sum_{j \geqslant 0} n^{j} P_{j}$, where $P_{j} \in \operatorname{Diff}(z)$ are differential operators that may not depend on z. If

$$
\sum_{n \in \mathbb{Z}} z^{n} P(n) g(z)=0
$$

for some formal series $g(z)=\sum_{j} g_{j} z^{j}$, then

$$
\left.P\left(\epsilon-z \partial_{z}\right) g(z)\right|_{z=1}=0
$$

as a polynomial in ϵ.
Define the τ-function as

$$
\tau(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text { def }}{=} \text { tor }\langle\mathrm{vac}| \exp (H(\boldsymbol{x})) g|\mathrm{vac}\rangle\rangle^{\text {tor }}
$$

From relation (10), together with lemma 1 and 2, we have the following bilinear identity:

$$
\begin{gather*}
\oint \frac{\mathrm{d} \lambda}{2 \pi \mathrm{i}} \exp \left(\xi\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}, \lambda\right)\right) \tau\left(\boldsymbol{x}-\left[\lambda^{-1}\right], y_{0}+\eta\left(\check{\boldsymbol{b}}, \lambda^{2}\right), \check{\boldsymbol{y}}-\check{\boldsymbol{b}}\right) \\
\times \tau\left(\boldsymbol{x}^{\prime}+\left[\lambda^{-1}\right], y_{0}-\eta\left(\check{\boldsymbol{b}}, \lambda^{2}\right), \check{\boldsymbol{y}}+\check{\boldsymbol{b}}\right)=0 \tag{11}
\end{gather*}
$$

where $\check{\boldsymbol{y}} \stackrel{\text { def }}{=}\left(y_{2}, y_{4}, \ldots\right)$ and $\eta\left(\check{\boldsymbol{b}}, \lambda^{2}\right) \stackrel{\text { def }}{=} \sum_{n=1}^{\infty} b_{2 n} \lambda^{2 n}$.

Expanding (11), we can obtain Hirota-type differential equations including (2) and (3) $\left(x_{1}=x, x_{3}=t^{\prime}, y_{0}=y, y_{2}=t\right)$. In this sense, the bilinear identity (11) is a generating function of Hirota-type differential equations of Bogoyavlensky's hierarchy. The N-soliton solution of (11) is obtained as follows [4]:

$$
\begin{align*}
& \tau_{N}(\boldsymbol{x}, \boldsymbol{y})=\sum_{l=0}^{N} \sum_{j_{1}<\cdots<j_{l}} c_{j_{1} \cdots j_{l}} \prod_{m=1}^{l} a_{j_{m}} \exp \left(\eta_{j_{m}}(\boldsymbol{x}, \boldsymbol{y})\right) \\
& \eta_{j}(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text { def }}{=} \sum_{n=1}^{\infty} 2 p_{j}^{2 n-1} x_{2 n-1}+\sum_{n=1}^{\infty} r_{j} p_{j}^{2 n} y_{2 n} \tag{12}\\
& c_{j_{1} \cdots j_{l}} \stackrel{\text { def }}{=} \prod_{1 \leqslant m<n \leqslant l} \frac{\left(p_{j_{m}}-p_{j_{n}}\right)^{2}}{\left(p_{j_{m}}+p_{j_{n}}\right)^{2}} .
\end{align*}
$$

3. Derivation of the differential-difference system

We now apply the Miwa transformation [8,14]

$$
\begin{align*}
& \boldsymbol{x}^{\prime}=l[\alpha]+m[\beta]+n[\gamma] \tag{13}\\
& \boldsymbol{x}=(l+1)[\alpha]+(m+1)[\beta]+(n+1)[\gamma]
\end{align*}
$$

to the bilinear identity (11). Here we have used the notation $l[\alpha]=\left(l \alpha, l \alpha^{2} / 2, l \alpha^{3} / 3, \ldots\right)$. We first consider the case $\check{\boldsymbol{b}}=\left(b_{2}, b_{4}, \ldots\right)=\mathbf{0}$. In this case, the bilinear identity (11) is reduced to that of the ordinary KP hierarchy. Thus we have the Hirota-Miwa equation (or the discrete KP equation)

$$
\begin{align*}
\alpha(\beta-\gamma) \tau(l & +1, m, n ; \boldsymbol{y}) \tau(l, m+1, n+1 ; \boldsymbol{y}) \\
& +\beta(\gamma-\alpha) \tau(l, m+1, n ; \boldsymbol{y}) \tau(l+1, m, n+1 ; \boldsymbol{y}) \\
& +\gamma(\alpha-\beta) \tau(l, m, n+1 ; \boldsymbol{y}) \tau(l+1, m+1, n ; \boldsymbol{y})=0 \tag{14}
\end{align*}
$$

where $\tau(l, m, n ; \boldsymbol{y})$ denotes

$$
\tau(l, m, n ; \boldsymbol{y})=\tau(\boldsymbol{x}=l[\alpha]+m[\beta]+n[\gamma], \boldsymbol{y}) .
$$

We then consider the time evolution with respect to y_{0} and y_{2}. Collecting the coefficients of b_{2} in the bilinear identity (11) gives

$$
\oint \frac{\mathrm{d} \lambda}{2 \pi \mathrm{i}} \exp \left(\xi\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}, \lambda\right)\right)\left(D_{y_{2}}-\lambda^{2} D_{y_{0}}\right) \tau\left(\boldsymbol{x}^{\prime}+\left[\lambda^{-1}\right], \boldsymbol{y}\right) \cdot \tau\left(\boldsymbol{x}-\left[\lambda^{-1}\right], \boldsymbol{y}\right)=0
$$

Applying the Miwa transformation (13) we obtain

$$
\begin{align*}
\alpha^{2} \beta \gamma(\beta-\gamma) & D_{y_{2}} \tau(l+1, m, n ; \boldsymbol{y}) \cdot \tau(l, m+1, n+1 ; \boldsymbol{y}) \\
& +\alpha \beta^{2} \gamma(\gamma-\alpha) D_{y_{2}} \tau(l, m+1, n ; \boldsymbol{y}) \cdot \tau(l+1, m, n+1 ; \boldsymbol{y}) \\
& +\alpha \beta \gamma^{2}(\alpha-\beta) D_{y_{2}} \tau(l, m, n+1 ; \boldsymbol{y}) \cdot \tau(l+1, m+1, n ; \boldsymbol{y}) \\
= & \beta \gamma(\beta-\gamma) D_{y_{0}} \tau(l+1, m, n ; \boldsymbol{y}) \cdot \tau(l, m+1, n+1 ; \boldsymbol{y}) \\
& +\gamma \alpha(\gamma-\alpha) D_{y_{0}} \tau(l, m+1, n ; \boldsymbol{y}) \cdot \tau(l+1, m, n+1 ; \boldsymbol{y}) \\
& +\alpha \beta(\alpha-\beta) D_{y_{0}} \tau(l, m, n+1 ; \boldsymbol{y}) \cdot \tau(l+1, m+1, n ; \boldsymbol{y}) \\
& -(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha) \\
& \times D_{y_{0}} \tau(l, m, n ; \boldsymbol{y}) \cdot \tau(l+1, m+1, n+1 ; \boldsymbol{y}) . \tag{15}
\end{align*}
$$

We further impose the condition $\beta=\gamma$. Then the τ-function $\tau(l, m, n ; \boldsymbol{y})$ depends only on $k \stackrel{\text { def }}{=} m-n, l$ and \boldsymbol{y}. In this sense, we rewrite

$$
\tau(l, m, n ; \boldsymbol{y}) \rightarrow \tau(l, k ; \boldsymbol{y}) .
$$

Figure 1. Special case of a two-soliton solution ('V-soliton') with $p_{1}=p_{2}\left(p_{1}=p_{2}=0.3\right.$, $r_{1}=0.15, r_{2}=-0.1, a_{1}=a_{2}=1, \alpha=0.8, \beta=0.5$).

Under this condition, (14) and (15) are reduced to

$$
\begin{align*}
& 2 \alpha \tau(l+1, k ; \boldsymbol{y}) \tau(l, k ; \boldsymbol{y})-(\alpha+\beta) \tau(l, k+1 ; \boldsymbol{y}) \tau(l+1, k-1 ; \boldsymbol{y}) \\
& \quad(\alpha-\beta) \tau(l, k-1 ; \boldsymbol{y}) \tau(l+1, k+1 ; \boldsymbol{y})=0 \tag{16}\\
& \alpha \beta^{2} D_{y_{2}}(2 \alpha \tau(l+1, k ; \boldsymbol{y}) \cdot \tau(l, k ; \boldsymbol{y})-(\alpha+\beta) \tau(l, k+1 ; \boldsymbol{y}) \cdot \tau(l+1, k-1 ; \boldsymbol{y}) \\
&\quad-(\alpha-\beta) \tau(l, k-1 ; \boldsymbol{y}) \cdot \tau(l+1, k+1 ; \boldsymbol{y})) \\
&= D_{y_{0}}\left(2\left(2 \beta^{2}-\alpha^{2}\right) \tau(l+1, k ; \boldsymbol{y}) \cdot \tau(l, k ; \boldsymbol{y})\right. \\
&-\alpha(\alpha+\beta) \tau(l, k+1 ; \boldsymbol{y}) \cdot \tau(l+1, k-1 ; \boldsymbol{y}) \\
&-\alpha(\alpha-\beta) \tau(l, k-1 ; \boldsymbol{y}) \cdot \tau(l+1, k+1 ; \boldsymbol{y})) . \tag{17}
\end{align*}
$$

Furthermore, we can construct the N-soliton solution by applying (13) to (12)

$$
\begin{align*}
& \tau_{N}\left(l, k ; y_{0}, y_{2}\right)=\sum_{l=0}^{N} \sum_{j_{1}<\cdots<j_{l}} c_{j_{1} \cdots j_{l}} \prod_{m=1}^{l} \phi_{j_{m}}\left(l, k ; y_{0}, y_{2}\right) \tag{18}\\
& \phi_{j}\left(l, k ; y_{0}, y_{2}\right) \stackrel{\text { def }}{=} a_{j} \exp \left(r_{j} y_{0}+r_{j} p_{j}^{2} y_{2}\right)\left(\frac{1+p_{j} \alpha}{1-p_{j} \alpha}\right)^{l}\left(\frac{1+p_{j} \beta}{1-p_{j} \beta}\right)^{k}
\end{align*}
$$

where $c_{j_{1} \cdots j_{l}}$ is the same as the continuum one (12). We remark that the N-soliton τ-function can be written as the Wronskian determinant. Using the determinant expression, we can show that both (16) and (17) are reduced to the Plücker relations.

Introducing the variables as

$$
\begin{aligned}
& \partial_{t} \stackrel{\text { def }}{=} \frac{2}{\alpha^{2}} \partial_{y_{0}}-2 \partial_{y_{2}} \quad \partial_{x} \stackrel{\text { def }}{=} \partial_{y_{2}}-\frac{1}{\beta^{2}} \partial_{y_{0}} \\
& u_{k}(t, x) \stackrel{\text { def }}{=} \log \left[\left(\frac{\beta-\alpha}{\beta+\alpha}\right)^{1 / 2} \frac{\tau(l+1, k+1) \tau(l, k)}{\tau(l, k+1) \tau(l+1, k)}\right] \\
& v_{k}(t, x) \stackrel{\text { def }}{=} \partial_{x} \log \frac{\tau(l, k+2)}{\tau(l, k)}
\end{aligned}
$$

we have the differential-difference equations (4) and (5), which have a N-soliton solution corresponding to the τ-function (18).

Let us consider the behaviour of $u_{k}(t, x)$ and $v_{k}(t, x)$ corresponds to (18) with $N=2$ (two-soliton solution). The choice $p_{1}=p_{2}$ gives a travelling wave solution that has a ' V ' shape (figure 1). In generic cases $\left(p_{1} \neq p_{2}\right)$ the solution has the same features as the two-soliton solution of the KP equation (figure 2).

Figure 2. Two-soliton solution with $p_{1} \neq p_{2}\left(p_{1}=0.3, p_{2}=0.23, r_{1}=0.15, r_{2}=-0.1\right.$, $a_{1}=a_{2}=1, \alpha=0.8, \beta=0.5$).

4. Concluding remarks

In this paper, we have introduced the differential-difference system (4) and (5), which is related to the toroidal Lie algebra, $\mathfrak{s}_{2}^{\text {tor }}$. Since the symmetry of the toroidal Lie algebra allows us to introduce extra parameters of wavenumbers in the soliton solution (i.e. r_{j} in (12) and (18)), it might be possible to construct some interesting solutions. In particular, we can obtain a class of travelling-wave solutions that are ' V ' shaped (figure 1), which is a special case of two-soliton solutions. The existence of the V-soliton type solution is one of the features of this class of equations.

We note that there exist solutions of the same shape for the $(2+1)$-dimensional KdV equation (1), and for a ($2+1$)-dimensional generalization of the nonlinear Schrödinger (NLS) equation [15] that also has the symmetry of toroidal Lie algebra $\mathfrak{s i}_{2}^{\text {tor }}$ [17]. We also remark that Oikawa et al [16] discussed the propagation of the V-soliton in a two-layer fluid, which is governed by an equation similar to the $(2+1)$-dimensional NLS equation.

Acknowledgments

The authors would like to acknowledge discussions with Dr Takeshi Ikeda and Professor Kanehisa Takasaki. The first author is partially supported by a Grant-in-Aid for Scientific Research (no 12740115) from the Ministry of Education, Culture, Sports, Science and Technology.

References

[1] Calogero F 1975 Lett. Nuovo Cimento 14 443-7
[2] Yu Song-Ju, Toda K, Sasa N and Fukuyama T 1998 J. Phys. A: Math. Gen. 31 3337-47
[3] Bogoyavlensky O I 1990 Russ. Math. Surv. 45 1-86
[4] Ikeda T and Takasaki K 2001 Int. Math. Res. Notices 7 329-69 (Ikeda T and Takasaki K 2000 Preprint nlin.SI/0004015)
[5] Sato M 1981 RIMS Kokyuroku 439 30-46
[6] Sato M and Sato Y 1982 Nonlinear Partial Differential Equations in Applied Sciences ed P D Lax, H Fujita and G Strang (Kinokuniya: North-Holland) pp 259-71
[7] Date E, Jimbo M, Kashiwara M and Miwa T 1983 Proc. RIMS Symp. Nonlinear Integtable Systems-Classical Theory and Quantum Theory ed M Jimbo and T Miwa (Singapore: World Scientific) pp 39-120
[8] Jimbo M and Miwa T 1983 Publ. RIMS 19943
[9] Billig Y 1999 J. Algebr. 217 40-64
[10] Iohara K, Saito Y and Wakimoto M 1999 Phys. Lett. A 254 37-46
Iohara K, Saito Y and Wakimoto M 2000 Phys. Lett. A 268 448-9
Iohara K, Saito Y and Wakimoto M 1999 Prog. Theor. Phys. Suppl. 135 166-81
[11] Kassel C 1985 J. Pure Appl. Algebr. 34 265-75
[12] Moody R V, Eswara Rao S and Yokonuma T 1990 Geom. Ded. 35 283-307
[13] Berman S and Billig Y 1999 J. Algebr. 221 188-231
[14] Miwa T 1982 Proc. Japan Acad. A 58 9-12
[15] Strachan I A B 1993 J. Math. Phys. 34 243-59
[16] Oikawa M, Okamura M and Funakoshi M 1989 J. Phys. Soc. Japan 58 4416-30
[17] Kakei S, Ikeda T and Takasaki K 2001 Preprint nlin.SI/0107065

